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LETTER TO THE EDITOR

Buckling properties of 2D regular elastomeric honeycombs

S Hutzler and D Weaire
Physics Department, Trinity College, Dublin, Ireland

Received 17 March 1997

Abstract. The buckling properties of a 2D regular honeycomb are studied using a model in
which each edge is subject to local elastic forces associated with stretching and bending. A
discretized version of the model is used to simulate the buckling of honeycombs under various
combinations of axial strains. No complex buckling patterns with large unit cells have yet
been found. This is contrary to some experimental results, which are attributed to wall effects.
In other respects our results roughly confirm and extend previous estimates of the buckling
transition.

The buckling of a regular honeycomb has been invoked as an elementary prototype for the
progressive collapse under stress of solid foams [1]. In addition, such honeycombs have
some direct interest since they are fabricated for structural uses [1]. From the theoretical
point of view the buckling of such a lattice structure provides interesting examples of
symmetry breaking.

In this Letter we introduce a simple model for the elastomeric honeycomb and explore
its properties. No plastic or brittle properties are attributed to the constituent material,
in contrast to some recent work by Silva and Gibson [2, 3]. Instead we concentrate on
the simplest case and allow some generality in the type of strains imposed and the key
parameters of the model. We have made a larger number of computations in this spirit
from which there emerges an appealing, if not yet fully developed, picture of the buckling
behaviour of the system.

The unstrained honeycomb (figure 1) consists of straight edges. Here we will take the
term buckling to refer to any curvature of these sides, developed under strain. With such a
definition, buckling occurs immediately upon imposition ofany strain other than isotropic
extension/compression. However if the strain is a combination of extension/compression
along the two axisx andy indicated in figure 1, then in general only partial buckling occurs
at low strain. Some edges remain straight on account of symmetry and are buckled only at
a certain critical value of strain (or stress). This transition has been the point of primary
interest in previous work [1] (and references cited therein), as it is here. Most references
to buckling in what follows refer to this transition. We will identify the critical point under
various combinations ofx and y strains. Among these the most important in practice is
the case which corresponds to uniaxial stress, in which the stress in thex or y direction is
maintained at a finite value while the other dimension is unconstrained.

The model used is related to the theory of thin beams and may be found for example
in the book by Landau and Lifshitz [4]. The energy of the honeycomb is written as a sum
of local stretching and bending contributions:

E = Estretch + Ebend . (1)
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The stretching energy is given by

Estretch = 1

2
ks

∫ (
dl

dl0
− 1

)2

dl0. (2)

Here each point in the beam is a distancel from one end, wherel0 is the value for zero
strain. The important parameterks determines the elastic resistance to stretching.

Figure 1. The undeformed honeycomb structure. The axes used for imposed strains and discrete
points used for a typical computation are indicated. Most calculations were performed with the
unit cell shown by a dashed line, andL = 1/3 in all cases.

Similarly the bending energy may be written

Ebend = 1

2
kb

∫
c2dl0. (3)

where c is the local curvature, and the parameterkb determines the elastic resistance to
bending. The angles at vertices remain fixed at 120o.

In thin beam theory these two parameters are given by

ks = Yd (4)

kb = Y d
3

12
(5)

whereY is the Young’s modulus of the two-dimensional beams of lengthl and widthd which
corresponds to the edges. Alternatively, in the case of a real honeycomb, it is the Young’s
modulus of the constituent material multiplied by its thickness in the third dimension. No
account is taken here or elsewhere of the finite size of the junctions, represented as vertices.

It follows that, to lowest order, the above energy describes an elastomeric honeycomb
made up of beams of such width that they occupy a fractionφ of its area, according to

φ = 2√
3

d

L
. (6)

For many purposes, the most significant parameter of the model is the dimensionless ratio
kb/L

2ks . In all of the calculations presented here,L = 1
3. Thus settingkb/L2ks = 9×10−4

for example givesφ = 0.12.
In order to reduce the problem to one of a finite number of variables, as necessary for

computation, we take two steps. Firstly the continuous curves which constitute the edges
(or thin beams) are represented by discrete points, typically about fifteen points per edge, as
in figure 1. This is an elementary procedure which is detailed elsewhere; it requires special
care only at the vertices. Secondly we impose periodicity on the deformed system with
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some unit cell which contains an integer number of honeycomb cells. For many purposes
the number could be one, but in general we used two (as shown in figure 1) and in some
cases more than two. It is important in any analysis of buckling which proceeds in such
a manner to remember that the real system has no such periodic constraint, so that the
provisional results obtained must be interpreted with caution.

The implementation of the model in a computer code, using the conjugate gradient
method to minimize energy under imposed strain, was tested thoroughly by calculation of
linear elastic properties. For example, the shear modulusG∗, computed using extensional
shear, is shown in figure 2 as a function ofkb/ks . There is only a small systematic
discrepancy between the computed results and the exact analytic one [5], which is

G∗/ks = kb/ks√
3L
(
L2

12 + kb
ks

) . (7)

Note, in particular, the linear dependence ofG∗ on kb at low kb/ks . This is the regime
of main interest, since real foams and honeycombs usually haveφ of the order 0.1 or less
(see equation (6)). Indeed, Gibson and Ashby implicitly takeks to be infinite at the very
outset. However, both conceptually and computationally, we have found it advantageous to
maintain a finite (but usually large) value ofks/kb in this model.

Figure 2. Shear modulus as a function ofkb/ks , the ratio of bending and stretching force
constants. The full line is the exact result [5] and computed values are shown as points. The
dashed line corresponds toks = ∞ [1].

We have calculated the deformation of the honeycomb and the associated change in
elastic energy, for various cases involving biaxial strains(εx, εy), whose positive values
correspond to extension along thex andy axes of figure 1. Examples are shown in figures
3 and 4 and figure 5 shows the locus of the buckling transition in the(εx, εy) plane. Its
location is usually obvious from graphical output but note that in some cases, such as that
in figure 3(b), there can be an overshoot, i.e. a culmination of the unbuckled state. This is
a numerical artefact.

For small compressive strains, these results take a simple form which may be rationalized
as follows if we associate a critical force with buckling of a single beam [1].

To lowest order inkb/ks the stress resulting from an imposed biaxial strain(εx, εy) is
isotropic, since we ignore the shear modulus to this order. This stress is proportional to
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(a)

(b)

Figure 3. (a) Structure resulting from buckling transition under uniaxial strain, imposed as
compression in they direction (εy = 0.03), for kb/L2ks = 9× 10−4. (b) The dependence of
energy upon strainεy for uniaxial strain, calculated with the unit cell of figure 1. We show
energyE of this unit cell as obtained from a strain cycle, where the structure is first strained
beyond the buckling point and then brought back to a slight extension in the y direction(εy > 0).

ks(εx + εy) and hence the critical strain for buckling is given by

ks(εx + εy) = constant. (8)

This line, of slope unity, is roughly consistent with figure 5, for small strains in the (-,-)
quadrant.

The case ofεx = εy (uniform compressive strain) is interesting, in that it buckles in the
same uniaxial manner as does the case of(0, εy). However, the important case of uniaxial
stress (the condition for which Young’s modulus is defined in linear elasticity) requires a
much more subtle analysis. These calculations were performed by imposing a strain in
one direction and relaxing the other dimension of the cell to minimize energy. It is clear
from the results that the nonlinear corrections to equation (8) and the Poisson ratio are both
important. Note in particular that the Poisson ratio rapidly departs from the value of linear
elasticity as strain is increased.

We find a critical strainεx ' −0.08 for compression on thex axis and no buckling
transition in the other direction. These results are in rough agreement with the estimate and
experiments of Gibson and Ashby [1].

The lack of any buckling for compression in they direction under the condition of



Letter to the Editor L327

(a)

(b)

Figure 4. (a) Unit cell resulting from buckling transition under uniaxial stress, imposed as
compression in thex direction (εx = 0.095), for kb/L2ks = 9× 10−4. (b) The dependence of
energy upon strainεx for uniaxial compressive stress in the x direction, calculated with the unit
cell of figure 1. E is the energy of the unit cell. As in the case of uniaxial strain the energy
curve exhibits no point of inflexion in the range shown, which would be indicative of localized
collapse in a large system.

uniaxial stress (in they direction) is an elementary consequence of the fact that the beams
that are candidates for buckling are in the direction of zero stress. The locus of the buckling
transition approaches close to, but never crosses, the line defined by Poisson’s ratio in figure
5, for this case. This anisotropy in the behaviour of the honeycomb makes it difficult to
relate its behaviour to that of a disordered network. This is similar to the situation in liquid
foams in which topological changes depend strongly on orientation of stress [6].

We must now return to the caveat already noted; these are results based on a small
periodic unit cell. Are they relevant to an infinite honeycomb without such constraint? In
the important case of uniaxial stress we believe that the answer is yes. In neither case does
there appear to be any indication of a point of inflection in curve ofE againstε which
would indicatelocalizedbuckling analogous to phase separation [1].
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Figure 5. The locus of the buckling transition is shown as the edge of the shaded area. Calculated
points include A,C (uniaxial strains), B (uniform compressive strain), D (uniaxial stress). The
last point is located on the dashed line, which is defined by the numerically determined Poisson
ratio for finite strains, under condition of compression in the x or y direction.

The case of uniaxial strain relates to an experiment of Gibson and Ashby [1]. The latter
is described as abiaxial stressexperiment, which it is, but examination of the deformed
structure indicates it was obtained under uniaxial strain. Instead of the pattern which we
would predict on the basis of our simulations (figure 3), a complex buckling pattern, with
eight honeycomb cells in the periodic unit, was observed in the experiment as in [1] (p 99).

However, when an appropriate unit cell (consisting of eight honeycomb cells) was
adopted for our calculation, this beautiful structure was not seen. Instead the more
elementary buckling pattern (roughly similar to figure 3(a)) was again found. How can
this serious discrepancy be resolved?

We believe the answer lies in the manner in which the experiment was performed. Not
only was the sample small (which tends to suppress localized buckling) but it also appears
to have been retained byflat walls, which are incompatible with the simple buckling pattern
of figure 3(a). The occurrence of the complex pattern is likely to be a finite size and wall
effect and not a property of the infinite system or larger samples.

Whether complex buckling patterns occur at all without hard walls or other constraints
which favour them is a fascinating question to which the answer may well be ‘no’.

Finally, we should note that many of our results conform well to an elementary theory
in which different modes of deformation, with different dependencies onks andkb, are in
competition with each other.

Figure 3(b) is a good example. The initial buckling mode has an energy approximately
proportional toksε2. Eventually a lower energy buckled state exists because an alternative
mode has energy approximately proportional tokbε. These proportionalities emerge from
the computation and may be rationalized by simple constraint-counting arguments. They
are consistent, as is the previous argument given above, with the following rule for this type



Letter to the Editor L329

of buckling transition

εcrit ∝ kb

ks
(9)

which was confirmed by computation for a wide range ofkb/ks . It is not necessarily to be
inferred thatεcrit goes to zero forks → ∞, since higher-order corrections enter into that
limit, and we believe that even at this small uniaxial strain is required for buckling.

Such a picture neglects the small amount of mixing of the two modes, and hence does
not purport to describe the fine details of the transition.

The further development of this theory and its extension to the more difficult case of
uniaxial stress will be undertaken in further studies. In addition, the predictions of the
model for disordered foam networks will be determined, and plastic/brittle materials will
be modelled. Already we would claim that this could well be regarded as the canonical
elementary model for this problem, although there will always be ambiguity and choice in
the definition of such an elastic model for finite strains.
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